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A proposal of grinding media standardization for ball mill abrasion test
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ABSTRACT

The Ball Mill Abrasion Test (BMAT) is a laboratory experiment used to measure the resistance of materials 
under high-stress abrasion conditions. This test, however, has yet to be standardized. In this work, 
statistical theory determines the optimal number of spheres per material to be included in BMAT. This 
theory and the optimization method presented in this paper show that the optimal number of spheres for 
the usual experimental conditions is six. Finally, it is shown that if the optimization process is extended 
over a broader range of experimental conditions, the optimum number of spheres per material is also six.

Keywords: Ball Mill Abrasion Test, sample size, standardization, optimization.

RESUMEN

El Test de Abrasión con Molino de Bolas es un experimento de laboratorio usado para medir la 
resistencia de materiales bajo condiciones de abrasión de alta presión. Este test, sin embargo, no ha 
sido estandarizado. En este trabajo, fundamentos estadísticos son considerados para determinar el 
número óptimo de esferas por tipo de material a ser incluido en el experimento. Usando esta teoría, 
junto con un método de optimización presentado en este trabajo, se muestra que el número óptimo de 
esferas para condiciones experimentales usuales es seis. Finalmente se muestra que, si el proceso de 
optimización es extendido a condiciones experimentales generales, el número óptimo de esferas por 
material es también seis.
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INTRODUCTION

The Ball Mill Abrasion Test aims to measure the 
resistance of various materials under abrasion 
conditions similar to those experienced in ball mills 

in the mining industry. The experiment consists of 
a rotating drum containing spheres of the materials 
to be studied, together with an abrasive medium, 
usually adding a containment medium such as water 
or alcohol to avoid the production and spread of 
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dust. By rotating the drum below its critical speed 
(the speed at which centrifugation of the contents 
occurs), the spheres (also known as grinding media) 
interact between themselves and the abrasive material, 
gradually leading to material wear.

In this test, numerous spheres of different materials 
can be included depending on the mill size to study 
their absolute and relative performance. Given 
the industrial relevance of this process, some 
scientific communities began to opt for this method 
to determine the resistance of materials under 
high-stress abrasion conditions. For this reason, 
extensive studies based on this test can be found 
in the literature, analyzing, for example, the effect 
of the mill dimensions and general experimental 
conditions [1]-[5], the contribution of the different 
wear mechanisms in the total wear [6], the effect 
of the microstructure and general characteristics of 
the grinding material [7]-[9], the influence of the 
abrasive mineral [10], and others. These results 
are intended to determine the most appropriate 
materials and configurations for optimizing these 
processes in the industry.

However, this experiment needs a standardized 
base of methodologies. These standardizations are 
necessary to ensure the credibility and reproducibility 
of the information obtained. This work will focus 
on analyzing the possible standardization of the 
number of spheres per material to be included in 
Ball Mill Abrasion Tests (BMAT). Therefore, this 
work aims to determine the optimal number of 
grinding spheres per type of material in BMAT.

BMAT IN CONTEXT

A search for the term “BMAT” in the Scopus 
database identified 89 documents. These have been 
developed over the last 96 years (Figure 1) and in 
different areas of knowledge (Figure 2). The first 
article registered with this technique dates to 1925, 
analyzing the abrasion resistance of rubber. Despite 
this, in 2020, research on this topic continues, given 
the high relevance of its results to the industry.

The most representative areas of knowledge of 
the published texts focus on 36.4% engineering, 
followed by 22.4% materials sciences, 13% physics, 
10% chemistry, 9.1% earth and the planet, and 6.1% 
chemical engineering. These represent 5 and 8 texts 

Source: Scopus database until 2021.

Figure 1. Documents published per year.

Source: Scopus database until 2021.

Figure 2. Documents by area of knowledge.

Source: Scopus database until 2021

Figure 3. Documents by institutions.

from the University of Minnesota Twin Cities, 
Pennsylvania State University, and The University 
of Queensland (Figure 3).

The author who published the most of this technique 
is Professor Iwasaki (Figure 4).
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It is for this reason that the following studies are 
part of the theoretical basis of this work:
•	 1988:	In	this	study,	the	results	of	marked	ball	

wear tests are used to discuss the relative 
importance of corrosive and abrasive wear in 
wet milling [11].

•	 1987:	The	interaction	of	nanomagnetic	sulphide	
mineral, pyrite, and debris of worn metal and 
its effects on the corrosion wear mechanism is 
studied [12].

•	 1989:	Good	agreement	was	 found	when	 the	
corrosion currents measured by electrochemical 
methods were compared with those estimated 
in the marked ball-wear tests [13].

•	 1992:	This	study	uses	white	cast	iron	specimens	
with varying percentages of chromium. The 
study showed that the electrochemical results 
agree with the flotation results and with data 
of corrosive wear obtained employing marked 
ball tests [14].

•	 1992:	The	 effect	 of	 oxygen	 and	 nitrogen	
atmospheres on the abrasive wear of the grinding 
medium is analyzed using a quartz mineral 
abrasion medium, contrasting with the corrosive, 
abrasive wear behavior and passivation behavior 
of cast iron with chromium [15].

In regards to the types of documents produced 
on this topic, the following were found: articles 
(78.8%), conference papers (19.1%), reviews, and 
reports (1.1%), as seen in Figure 5.

STATISTICAL CONSIDERATIONS

Given that the sample size is relatively small in 
BMAT experiments, the t-student distribution is 

used since it allows us to approximate the errors 
better. The parameter of interest in this study is the 
95% confidence interval, given by the following 
expression.

I = X ±
t 1−a, n−1( )σ

n
(1)

Where t (1 – a, n – 1) corresponds to the t-value of the 
t-student distribution for a given confidence range, σ 
represents the standard deviation, and n is the sample 
size. If the mean is shifted to the origin, then the 
first term of this expression vanishes. Furthermore, 
if t (1 – a, n – 1) is replaced by the t value for a 95% 
confidence interval, equation (1) can be used to 
calculate the confidence interval as multiples of 
the standard deviation σ for different sample sizes, 
obtaining the result shown in Figure 6.

Source: Scopus database until 2021.

Figure 4. Documents by author.

Source: Scopus database until 2021.

Figure 5. Type of published documents.

Figure 6. 95% Confidence limits as multiples of 
standard deviation based on sample size.
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It is observed in Figure 6 that the limits of the 
confidence interval rapidly contract when the 
sample size is initially increased. In particular, this 
significant reduction in the interval occurs when the 
sample size is increased to approximately n = 4. Of 
particular interest is the fact that when the sample 
size is 6, the confidence interval can be given as a 
multiple of approximately one standard deviation. 
From this point on, the confidence interval reduces 
at a lower rate. Taking 11 extra determinations to 
reduce the interval to half of that at n = 6. For this 
reason, n = 6 is usually taken as the candidate to be 
the optimum sample size for estimating a parameter 
of interest. This hypothesis will be evaluated in the 
context of the BMAT experiments, verifying that 
it is fulfilled for all or most of the experimental 
conditions that can be given in this test.

ASTM standard on sample size
Within the standards established by ASTM, the 
designation E1 22-17 can be found, whose topic 
is “Standard practice for calculating simple size 
to estimate, with specified precision, the average 
for a characteristic of a lot or process” [16], in 
which different methods are explored to calculate 
an appropriate sample size to obtain results with a 
certain precision. This standard has been approved 
for use by the US Department of Defense agencies. 
It is generally taken as a reference for conducting 
experiments involving the estimation of a characteristic 
of a batch or process, as is the case of BMAT. Although 
this standard does not explicitly state that by using 6 
specimens per material, the mean will be within one 
standard deviation of the population, this result can 
be derived from one of the equations presented in it.

m =
3σ 0
E

⎛

⎝
⎜

⎞

⎠
⎟
2

(2)

Where n represents the sample size taken from a batch 
or process, σ0 represents an advanced estimate of σ, 
E the maximum acceptable difference between the 
actual mean and the estimated mean (equation (2)). 
The desired variable of this expression is precisely 
E, expressed in terms of σ0, with which we obtain:

E = 3σ 0
n (3)

It is important to note that, as specified in the 
standard, the multiplicative factor 3 corresponds to 

a low probability that the difference between the 
result of measuring all the units in the lot and the 
sample estimate is more significant than E. This 
factor is included in the equation (3) arbitrarily and 
is simply recommended for general use. Suppose 
the approximate probability of exceeding E is set 
to be 0.010. In that case, the multiplicative factor is 
replaced by 2.56, and if n = 6 is chosen (since it is 
the candidate for the optimal sample size number), 
the following is obtained:

E =1.04σ 0 (4)

This result is precisely the outcome obtained in 
the previous section. The equation (4) expresses 
that the maximum difference between the actual 
and sample mean is approximately one standard 
deviation, provided that the approximate probability 
of exceeding E is 0.01 and the sample size is n = 6. 
It is important to note that the equation shown in 
this standard can be obtained in normal distribution 
theory, where E is generally represented as . It 
is known, and taken as standard practice, that if 
the sample size is less than 30, the distribution 
to be used is the t-student distribution, as it best 
approximates the errors in small sample sizes, as 
indicated above. Using this distribution, the t value 
for the 95% confidence interval with n-1 degrees 
of freedom yields a multiplicative factor of 2.57, 
producing essentially the same result shown above.

MATERIALS AND METHODS

Existing results from Ball Mill Abrasion Tests 
(BMAT) were used. These results correspond to 
experiments in which the effect of the rotational 
speed of the mill on the absolute and relative wear 
of the materials is evaluated. The rotational speeds 
were varied from 15% to 85%. In these experiments, 
a neutral grinding medium (whose performance is not 
measured) was added to achieve the desired mill fill 
percentages. Finally, water was added to reduce the 
risks associated with inhaling dust from the grinding 
of the abrasive medium. The parameter considered 
after each experiment is the mass loss per sphere, 
which is then processed so that the yield units are mg/
(dm2*h), thus considering the variations in surface 
area and duration of the experiment. Unless stated 
otherwise, the amounts mentioned in this work will 
correspond to these units. Table 1 shows the material‘s 
chemical specifications, whose performance was 
considered and analyzed in this work.
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A Python script was designed to extract and process 
the experimental results from a datasheet. From a 
list of ‘m’ data points corresponding to the material 
performance, and for a given rotational speed, the 
code generates a collection of lists of all possible 

unique combinations of ‘n’ values, that is 
m!

n! m− n( )!
 

combinations. Then, the average and standard 
deviation of each list of combinations is calculated, 
and this information is stored in two variables: ‘Avg 
(comb)’ and ‘Stv (comb).’ From the information 
stored in these variables, it is possible to generate 
histograms that show the recurrence of the different 
ranges of means and standard deviations for a 
chosen value of ‘n.’ This process can be repeated 
for all n≤m to observe the impact of the number 
of determinations on the histograms of means and 
standard deviation.

Likewise, the mean of the values contained in ‘Stv 
(comb)’ can be calculated, and this information can, 
in turn, be used to construct the 95% confidence 
intervals for the different values of n ≤ m. Since it 
has been shown by ASTM-International [16] and in 
previous sections that a potential candidate for the 
optimal number of spheres per material in BMAT 
is six, the optimization process is carried out on 
this sample size value. The optimization process 
involves choosing a combination of six data points 
whose mean is within the range with the highest 
recurrence for the variable ‘Avg (comb)’. From this 
point on, the combinations that produce this mean 
are probed, and the one with the lowest standard 
deviation is chosen. This step makes it possible to 
calculate the optimized 95% confidence interval 
for this ‘n’ number of spheres. In turn, this can be 
compared with the confidence interval produced 
with the ‘m’ values available.

RESULTS

Results from 15% of critical speed
This section shows the histograms of means and 
standard deviation undergo an evolution as the 

number of determinations is increased, partly due to 
the increase in the number of possible combinations 

of spheres given by 
m!

n! m− n( )!
.  Given the available 

number of spheres for these experiments, it is found 
that the maximum number of unique combinations 
occurs when the value of n is approximately 6. 
When the combinations are made with two values 
only, Figure 7 is obtained.

The combination of two values shows a strong 
weakness in predicting the actual value of the 
mean since the mean values of combinations are 
spread almost evenly over a significantly extensive 
range. With this, it is not possible to determine an 
acceptable range of the mean, so the optimization 
process cannot be carried out successfully. However, 
as the number of combinations grows due to the 
increase in n, the histograms resemble a normal 
distribution, as shown in Figure 8.

Given this distribution, it is possible, with greater 
confidence, to claim that the actual mean of the 
population is located around the central zone, given 
that it resembles the behavior of a normal distribution. 
Through filtering the results, a combination can be 
found that has a mean within the central range and 
also has a relatively low standard deviation. This 
argument will be used to optimize the confidence 
interval for this sample size, which will be specified 
in the following sections. Furthermore, when 
considering the combination of all available data 
points (n = 10), the mean is approximately 96.4, 
and the standard deviation is approximately 11.4. It 
is evident that for this number of spheres, it is not 
possible to carry out the optimization process as it 
coincides with the maximum number of spheres 
available, preventing the algorithm from finding 
a combination with a lower standard deviation. 
Figure 9 is obtained by calculating and plotting the 
mean of the standard deviations for each sample size.

It is observed that the mean standard deviation 
increases as the sample size increases; this is 
mainly due to the pre-existing physical differences 
in the spheres (size or shape). The effect of these 
differences can be eliminated by normalizing the 
results. However, the normalization process only 
partially allows to vanish the influence of these 
differences, as has been shown by [17]. It should 
be emphasized that the values analyzed in this 

Table 1. Chemical composition of the material to 
be analyzed in BMAT.

Chemical composition of the material (wt%)
C Cr Mo Cu Mn Si Ni

3.13 10.62 0.01 0.10 0.50 0.36 0.12
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Figure 7. Histogram of means and standard deviations for combination 
of 2 values.

Figure 8. Histogram of means and standard deviations for a combination 
of 6 values.

work have been normalized prior to processing 
so that the increase observed in the average of the 
standard deviations results only from the collection 
of combinations that have relatively distant data. 
Based on this, the 95% confidence intervals can then 
be calculated, substituting σ for the mean standard 
deviation values for each n value, thus obtaining 
the results shown in Figure 10.

Figure 10 was constructed with the values seen in 
Table 2. This table contains the standard deviation 
calculated for each n value. Consequently, the upper 
and lower limits for the 95% confidence interval 
can be calculated, as also shown in Table 2 below. 

Through the optimization process described in 
earlier sections, the standard deviation value can 
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Figure 9. Average standard deviation vs sample size.

Figure 10. 95% confidence intervals vs sample size.

Table 2. Upper and lower limits of the 95% 
confidence intervals for sample size n.

n
Standard 
deviation

95% confidence interval

Upper limit Lower limit

 2 7.167 64.3929402 –64.39294
 3 9.195 22.8436336 –22.843634
 4 10.068 16.0204347 –16.020435
 5 10.539 11.060422 –11.060422
 6 10.831 10.0177534 –10.017753
 7 11.030 9.22143617 –9.2214362
 8 11.173 8.5887124 –8.5887124
 9 11.281 8.07064946 –8.0706495
10 11.367 7.63652169 –7.6365217

be reduced for n = 6, thus reducing the confidence 
interval, as shown in Table 3.

These results show that the 95% confidence interval 
reduction for n = 6 is significant, being only 0.7% 
higher than that obtained with n = 10. There is no 
merit in increasing the sample size to eleven (without 
considering significant pre-existing differences) 
since results with essentially the same experimental 
relevance can be obtained with six systematically 
chosen elements. The reduction of the confidence 
interval at n = 6 can be visualized using Figure 11.

Figure 11 shows how the upper and lower limits of 
the confidence interval for n = 6 contract, reaching 
levels very close to those reached for n = 10.

Extension of the optimization process
As shown in the previous section, the optimization 
procedure followed for the 15% rotational speed can 

Table 3. Optimization of the upper and lower limits 
of the confidence interval for n = 6.

n
Standard 
deviation

95% confidence interval

Upper limit Lower limit

 2 7.167 64.3929402 –64.39294
 3 9.195 22.8436336 –22.843634
 4 10.068 16.0204347 –16.020435
 5 10.539 11.060422 –11.060422
 6 7.3352 7.69782031 –7.6978203
 7 11.030 9.22143617 –9.2214362
 8 11.173 8.5887124 –8.5887124
 9 11.281 8.07064946 –8.0706495
10 11.367 7.63652169 –7.6365217

Figure 11. 95% confidence intervals and with 
optimization for n = 6.

be carried out for the rest of the speeds for which 
the experiment was performed. The following table 
summarizes the results for all the speeds analyzed 
in this work, concentrating on the dimension of the 
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confidence interval for n = 6 before and after the 
optimization process and comparing the optimized 
value with that obtained for n = 10.

It can be seen in Table 4 that through the optimization 
process followed, the dimension of the 95% 
confidence interval for n = 6 can be significantly 
reduced. On average, a reduction of 26.1% of the 
confidence interval is achieved, a significant and 
necessary change to improve the credibility of 
the information obtained in these experiments. 
Furthermore, the dimensions of the confidence 
intervals for optimized n = 6 are close to those for 
n = 10, with an average difference of 4.8%. These 
results form important evidence to affirm that 
there is no merit in increasing the sample size of 
the materials in BMAT if this increase introduces 
elements whose characteristics differ significantly 
from the existing sample. It is enough to include six 
elements in the sample whose characteristics are 
uniform to obtain relevant results on the performance 
of the materials. Figure 12 illustrates the optimization 
of the confidence intervals.

It can be seen in Figure 12 that the optimization process 
is capable of reducing the dimension of the confidence 
interval for all the speeds analyzed in this work, which 
include those speeds usually applied in the industry (~ 
65%). Additionally, as mentioned above, the optimized 
intervals are significantly close to those obtained with 
10 elements, thus confirming the hypothesis that it 
is sufficient to include six elements per material in 
the BMAT experiments to obtain reproducible and 
relevant results for the scientific community, ensuring 
that these elements have uniform characteristics before 
being included in the experiments.

Table 4. Comparison of the optimized confidence interval for n = 6 with the confidence interval for n = 10.

Speed 
(% of critical speed)

A B C D E

Non-optimised 
interval

Optimised 
interval

% difference 
of A and B

Interval 
for n = 10

% difference 
of B and D

15 22.12 15.39 30.4 15.26 0.8
25 32.08 23.74 26.0 21.68 9.5
35 42.52 31.89 25.0 30.36 5.0
45 43.44 31.44 27.6 31.12 1.0
65 54.14 40.59 25.0 38.70 4.9
85 57.01 43.99 22.8 40.71 7.5

Average % difference of B - D 4.8

Figure 12. 95% confidence intervals before and 
after the optimization process.

DISCUSSION

Similar studies are found in the literature regarding 
the attainment of the minimum number of specimens 
required for a given experiment [18], [19], ensuring 
that this minimum number still produces relevant 
results for the scientific community. For example, Jie 
Cui et al. [18] evaluate the possibility of estimating 
the number of specimens required in a mechanical 
experiment. Although [18] do not reach an explicit 
determination of the optimal number of specimens 
(due to the numerous varieties of the properties of 
the materials analyzed in this study), it is concluded 
that methods such as the one followed in this work 
are suggested, given the availability of specimens for 
the accumulation of experience and understanding 
of their behavior under different conditions. In this 
case, the BMAT experiments show high replicability 
of their results [20], thereby ensuring this last point.

It should be remarked that in the study of [18], the 
approaches for determining the number of specimens 



García, Quiroz, Sablón: A proposal of grinding media standardization for ball mill abrasion test

9

are also classified into two groups, called ‘Decision 
of the simple number approach (DSNA)’ and 
‘Confidence Interval approach (CIA)’. It is within 
the latter category where the methodology followed 
in this work focuses. Similar mechanisms can be 
found in works such as those of Smith, Denis, and 
Borradaile [21]-[23] within the CIA.

Given that the considered BMAT experiments 
did not have more than 10 specimens, the upper 
left part of Figure 13 can be considered, where 
the 95% confidence intervals through CIA and 
DSNA are compared. The difference between 
the limits generated by CIA-t (the approach used 
in this work) and those generated by DSNA are 
negligible from approximately 5 specimens. 
Thus, considering that in this work, it is proposed 
that the optimal number of specimens is 6, it is 
concluded that the confidence intervals, especially 
those optimized, are the minimum possible among 

the possible intervals that can generate different 
statistical approaches.

Unlike other works shown in the literature, this analysis 
has demonstrated the possibility of optimizing the 
confidence intervals given an arbitrary set of samples 
for BMAT. It is clear that, due to the nature of the 
BMAT experiment and the high reproducibility of the 
results given by it, the confidence intervals behave 
as those predicted by the theory; however, it has also 
been possible to find an optimization method that 
significantly reduces these intervals, if the sample 
has been chosen arbitrarily. The optimized sample 
comprises those grinding components whose initial 
mass (and therefore initial surface area) are the least 
distant from each other. This finding was corroborated 
by the optimization method presented, which, apart 
from choosing a set of spheres with low standard 
deviation, can also find a set that simulates the entire 
population’s behavior.

Source: [18].

Figure 13. Contrast of the deviation limit curves of parameter mean calculated with DSNA 
and CIA.
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CONCLUSIONS

The BMAT experiment has been very beneficial for 
the scientific community to determine the material’s 
performance in machinery in the mining industry. 
However, difficulty was found in determining the 
appropriate or necessary amount of the grinding 
medium (metallic spheres) that ensures the correct 
determination of the material’s performance without 
the need to resort to an excessive amount of starting 
material. In this study, statistical methods have been 
used to theoretically determine the ideal number 
of spheres per material, concluding that using six 
spheres makes it possible to obtain necessary and 
relevant results for the scientific community. An 
extensive analysis of pre-existing results from BMAT 
experiments confirmed this result. Additionally, it 
was possible to build an optimization method that 
could significantly reduce the confidence intervals of 
the material’s performance for a given sample size. 
This process was carried out for various experimental 
conditions (different rotational speeds), concluding 
that the optimal value of spheres per material is six. 
On average, the optimization method achieved a 
26.1% reduction in the confidence interval, differing 
only by 4.8% from the results of the sample composed 
of eleven arbitrarily selected spheres. It is concluded 
that it is optimal for future BMAT experiments to 
include only six spheres per material, using these 
results to promote this laboratory equipment’s 
standardization process.
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